Free Fire Image Slider

1 / 3
Caption Text
2 / 3
Caption Two
3 / 3
Caption Three
4 / 4
Caption Text

Videos

Video is an electronic medium for the recording, copying, playback, broadcasting, and display of moving visual media.[1]
Video was first developed for mechanical television systems, which were quickly replaced by cathode ray tube (CRT) systems which were later replaced by flat panel displays of several types.
Video systems vary in display resolutionaspect ratiorefresh rate, color capabilities and other qualities. Analog and digital variants exist and can be carried on a variety of media, including radio broadcastmagnetic tapeoptical discscomputer files, and network streaming.

HD | Apr 18, 2014 | 389,974,153 views by OneDirectionVEVO
Pre-order the You & I single bundle including a remix from Liam Payne now! iTunes: http://smarturl.it/1DYouAndIPreOrder?IQID=ve Taken from the album ...                                                                          



HD | Nov 03, 2013 | 722,397,326 views by OneDirectionVEVO
One Direction's official music video for Story of My Life. As featured on Midnight Memories, listen on Spotify http://smarturl.it/MidnightMemoriesSP Click to buy the ...


HD | Oct 24, 2014 | 299,992,438 views by OneDirectionVEVO
One Direction's official music video for Steal My Girl. As featured on Four, listen on Spotify http://smarturl.it/FOURspot Click to buy the album via iTunes: ...

History

Video technology was first developed for mechanical television systems, which were quickly replaced by cathode ray tube (CRT) television systems, but several new technologies for video display devices have since been invented. Video was originally exclusively a live technology. Charles Ginsburg led an Ampex research team developing one of the first practical video tape recorder (VTR). In 1951 the first video tape recorder captured live images from television cameras by converting the camera's electrical impulses and saving the information onto magnetic video tape.
Video recorders were sold for US $50,000 in 1956, and videotapes cost US $300 per one-hour reel.[2] However, prices gradually dropped over the years; in 1971, Sony began selling videocassette recorder (VCR) decks and tapes into the consumer market.[3]
The use of digital techniques in video created digital video, which allows higher quality and, eventually, much lower cost than earlier analog technology. After the invention of the DVD in 1997 and Blu-ray Disc in 2006, sales of videotape and recording equipment plummeted. Advances in computer technology allows even inexpensive personal computersand smartphones to capture, store, edit and transmit digital video, further reducing the cost of video production, allowing program-makers and broadcasters to move to tapeless production. The advent of digital broadcasting and the subsequent digital television transition is in the process of relegating analog video to the status of a legacy technology in most parts of the world. As of 2015, with the increasing use of high-resolution video cameras with improved dynamic range and color gamuts, and high-dynamic-range digital intermediate data formats with improved color depth, modern digital video technology is converging with digital film technology.

Characteristics of video streams

Number of frames per second

Frame rate, the number of still pictures per unit of time of video, ranges from six or eight frames per second (frame/s) for old mechanical cameras to 120 or more frames per second for new professional cameras. PAL standards (Europe, Asia, Australia, etc.) and SECAM (France, Russia, parts of Africa etc.) specify 25 frame/s, while NTSC standards (USA, Canada, Japan, etc.) specify 29.97 frame/s.[4] Film is shot at the slower frame rate of 24 frames per second, which slightly complicates the process of transferring a cinematic motion picture to video. The minimum frame rate to achieve a comfortable illusion of a moving image is about sixteen frames per second.[

Interlaced vs progressive

Video can be interlaced or progressive. In progressive scan systems, each refresh period updates all scan lines in each frame in sequence. When displaying a natively progressive broadcast or recorded signal, the result is optimum spatial resolution of both the stationary and moving parts of the image. Interlacing was invented as a way to reduce flicker in early mechanical and CRT video displays without increasing the number of complete frames per second. Interlacing retains detail while requiring lower bandwidth compared to progressive scanning.
In interlaced video, the horizontal scan lines of each complete frame are treated as if numbered consecutively, and captured as two fields: an odd field (upper field) consisting of the odd-numbered lines and an even field (lower field) consisting of the even-numbered lines. Analog display devices reproduce each frame, effectively doubling the frame rate as far as perceptible overall flicker is concerned. When the image capture device acquires the fields one at a time, rather than dividing up a complete frame after it is captured, the frame rate for motion is effectively doubled as well, resulting in smoother, more lifelike reproduction of rapidly moving parts of the image when viewed on an interlaced CRT display.
NTSC, PAL and SECAM are interlaced formats. Abbreviated video resolution specifications often include an i to indicate interlacing. For example, PAL video format is often described as 576i50, where 576 indicates the total number of horizontal scan lines, i indicates interlacing, and 50 indicates 50 fields (half-frames) per second.
When displaying a natively interlaced signal on a progressive scan device, overall spatial resolution is degraded by simple line doubling—artifacts such as flickering or "comb" effects in moving parts of the image which appear unless special signal processing eliminates them. A procedure known as deinterlacing can optimize the display of an interlaced video signal from an analog, DVD or satellite source on a progressive scan device such as an LCD television, digital video projector or plasma panel. Deinterlacing cannot, however, produce video quality that is equivalent to true progressive scan source material

Analog video

Analog video is a video signal transferred by an analog signal. An analog color video signal contains luminance, brightness (Y) and chrominance (C) of an analog television image. When combined into one channel, it is called composite video as is the case, among others with NTSCPAL and SECAM.
Analog video may be carried in separate channels, as in two channel S-Video (YC) and multi-channel component video formats.
Analog video is used in both consumer and professional television production applications.

Digital video

Digital video signal formats with higher quality have been adopted, including serial digital interface (SDI), Digital Visual Interface (DVI), High-Definition Multimedia Interface (HDMI) and DisplayPort Interface, though analog video interfaces are still used and widely available. There exist different adaptors and variants.

Transport medium

Video can be transmitted or transported in a variety of ways. Wireless broadcast as an analog or digital signal. Coaxial cable in a closed circuit system can be sent as analog interlaced 1 volt peak to peak with a maximum horizontal line resolution up to 480. Broadcast or studio cameras use a single or dual coaxial cable system using a progressive scan format known as SDI serial digital interface and HD-SDI for High Definition video. The distances of transmission are somewhat limited depending on the manufacturer the format may be proprietary. SDI has a negligible lag and is uncompressed. There are initiatives to use the SDI standards in closed circuit surveillance systems, for Higher Definition images, over longer distances on coax or twisted pair cable. Due to the nature of the higher bandwidth needed, the distance the signal can be effectively sent is a half to a third of what the older interlaced analog systems supported.

What Do You Think About Videos?


Aspect ratio

Aspect ratio describes the proportional relationship between the width and height of video screens and video picture elements. All popular video formats are rectangular, and so can be described by a ratio between width and height. The ratio width to height for a traditional television screen is 4:3, or about 1.33:1. High definition televisions use an aspect ratio of 16:9, or about 1.78:1. The aspect ratio of a full 35 mm film frame with soundtrack (also known as the Academy ratio) is 1.375:1.
Pixels on computer monitors are usually square, but pixels used in digital video often have non-square aspect ratios, such as those used in the PAL and NTSC variants of the CCIR 601 digital video standard, and the corresponding anamorphic widescreen formats. The 720 by 480 pixel raster uses thin pixels on a 4:3 aspect ratio display and fat pixels on a 16:9 display.
The popularity of viewing video on mobile phones has led to the growth of vertical video. Mary Meeker, a partner at Silicon Valley venture capital firm Kleiner Perkins Caufield & Byers, highlighted the growth of vertical video viewing in her 2015 Internet Trends Report – growing from 5% of video viewing in 2010 to 29% in 2015. Vertical video ads like Snapchat’s are watched in their entirety nine times more frequently than landscape video ads.

No comments:

Post a Comment